Under Pressure
Figure 1: Pneumatic cylinders are used in pick-and-place applications for filling trays with food items.
The control cabinet can be structured accordingly to improve thermal management and efficiency. “Smaller, more efficient components mean less heat dissipation, which allows for smaller fans,” says Weiss. “Using fewer components reduces the wiring, thus reducing the heat. Because the signal is now digital, as opposed to analog, it is more efficient so less energy is required to send the signal.” Reducing heat also helps to preserve electronic equipment and reduce breakdowns.
“We see the increased use of intelligent pressure control, such as reducing the pressure on a no-load return stroke for a cylinder, which is easily accomplished by adding a pressure regulator but greatly increases efficiency,” says John Bridges, technical business manager at Aventics. “Increasingly, pressure regulators are being integrated into custom valve manifolds that we build (Figure 1).”
The Internet of Things includes things, such as machines, says Mary Burgoon, market development manager at Rockwell Automation. “How do the machines in a plant talk to each other to modulate production when there is a blockage or a machine goes down?” she asks. “Do they automatically send a machine-to-machine (M2M) signal to shut it down and slow down production until that machine can come back online? The next target is dependency and smart connections from machine to machine.”
Also Read: Industrial Motors and Drives Keep Improving
Everything electrical is sized based on the amount of current that goes through it, so if you can reduce your energy consumption on each individual machine by 5% or 10%, it allows your energy infrastructure to handle more with a smaller system, explains Rich Mintz, product manager for gear motors at Siemens. “You see that all the way down to the drive train,” he says. “For example, a two-stage bevel gearbox and a worm gearbox are about the same size and have almost the same form fit function from the outside, but because of the inefficiency inside of the mechanical system, you’re going to lose one-half to one-third of the energy that you put into the worm gearbox. That means buying more motor, a larger drive and a larger circuit breaker than you would need with the two-stage bevel gearbox. That adds up pretty fast.”
Predictions