How two-degree-of-freedom controllers optimize setpoint response, minimize the effect of load disturbances

Feb. 22, 2022

Greg: I am truly excited and appreciative of the involvement and achievement of leaders in process control who are coming together to create the ISA 5.9 Technical Report—a potential game changer. The PID algorithm is the most powerful tool for achieving individual loop performance as seen in the legacy of Greg Shinskey highlighted in last month’s tribute column. PID capabilities are underutilized mostly due to a lack of understanding.

Here Sigifredo Nino and I share our knowledge of PID structure and external-reset feedback (e.g., dynamic reset limit). Both of these features enable one to tune a PID to maximize load disturbance rejection as advocated by Shinskey, and still address the many other objectives and limitations. Presently, the PID is frequently detuned to deal with these situations, posing a severe, confusing burden on users, and resulting in a serious degradation in load response. The features presented here are simple to use and robust, enabling us to move on, which is greatly appreciated.

Read more on ControlGlobal.com.

Sponsored Recommendations

Minimizing downtime with linear guide wheels in dirty environments

Is debris causing costly downtime and equipment failure? Learn how advanced self-cleaning guide wheel systems with solid lubrication can tackle debris, reduce wear, and keep operations...

2024 State of Technology Report: PLCs and PACs

Programmable logic controllers (PLCs) and programmable automation controllers (PACs) are the brains of the machine in many regards. They have evolved over the years.This new State...

High Sensitivity Accelerometers to Monitor Traffic and Railroad Vibration for Semiconductor Manufacturing

This paper examines highly sensitive piezoelectric sensors for precise vibration measurement which is critical in semiconductor production to prevent quality and yield issues....

Simulation for Automation Guide

How digital twin solutions are expanding the capabilities of plant engineers.