Go Big
Flat panel displays gave Schiller Automation the experience it needed to move very thin and large glass substrates in thin-film photovoltaics production.
Schiller
Schiller's core competency was customized automation—a good fit for thin-film solar cell manufacturing, which relies on its technology differentiation to compete. So Schiller began working with the industry's leading amorphous silicon (a-Si) turnkey manufacturer. This technology grows thin films of silicon on panels of glass measuring typically more than a meter on each side. "Flat panel displays gave us a lot of experience moving very thin and large glass," Willingham says. "And the detail work gave us experience in doing something difficult in one little spot across a large area."
For its first solar customer, Schiller provided all of the internal automation in the front end (cell production), and in each successive solar fab, it played an increasing role. It now has a hand in automating back-end solar processes (module production) as well, and has made an entry into other thin-film technologies like CdTe and CIGS, as well as wafer-based solar, which makes up the lion's share of what is used today.
The equipment builder is behind some of the biggest names in solar, but it's not a well known name itself. "A lot of people aren't that familiar with Schiller," Willingham says, noting that Schiller is probably the most experienced company people haven't heard of in the solar industry. "We have 1.3 GW of thin-film factory fab automation either installed or contracted this year."
For the crystalline (bulk wafer) lines, factory automation is not the given that it is in the front end of thin-film solar processes. "Automation is important as fabs grow in volume, but it's not inherent," Willingham says. "We automate the larger crystalline lines, but we automate all thin-film lines."
After making its name in customized automation, Schiller is moving toward more standardized solutions for the crystalline solar industry. "The difficult thing about thin film is that everybody is different. It's harder to have one scheme translate across multiple customers," Willingham explains. "That's not true in crystalline."
Amorphous silicon is arguably the most difficult of the solar technology from an automation standpoint, Willingham says, because it's less serial and more of a batch process. "That makes other technologies easier," he says. "The more serial it is, the scheme gets a little easier."
For the crystalline process, the key has been improved production efficiency with an improved footprint — three times the throughput in the same amount of space. "Since we've been around for years, and we've helped a dozen different customers, it's given us insight into how to reduce cost over time," Willingham says. "Usually, at the beginning, you want a fair amount of flexibility. You want to make sure your automation scheme can make up for that. But as you get it together, you want a system that can increase speed without increasing cost. We work with companies to build in flexibility from the start."