The BionicFinWave navigates autonomously through a system of water-filled tubes
The BionicFinWave was inspired by the fin movements executed by marine animals such as the polyclad or the cuttlefish. With this form of propulsion, the underwater robot maneuvers itself autonomously through a system of water-filled acrylic tubing. Swimming autonomous robots like the BionicFinWave could possibly be developed for tasks such as inspection, measurement and data acquisition in the water, wastewater and other process industries. The knowledge gained in this project could also be used for methods in the manufacturing of soft robotics components.
Undulation forces from longitudinal fins allows the BionicFinWave to maneuver itself forward or backward. The fin drive unit is particularly suitable for slow, precise motion and causes less turbulence in the water than a conventional screw propulsion drive. While it moves through the tube system, the robot can communicate with the outside world via radio and transmit data, such as temperature and pressure sensor readings, to a mobile device.
The two lateral fins are molded entirely from silicone. The two fins can move independently of each other and by this means simultaneously generate different wave patterns and swim in a curve. The BionicFinWave moves upwards or downwards by bending its body in the desired direction. The crankshafts together with the joints and piston rod are made from plastic as integral components in a 3D printing process. The remaining body elements of the BionicFinWave, which weighs only 15 ounces, are also 3D-printed; this enables the complex geometry to be realized. Pressure and ultrasound sensors constantly register the BionicFinWave’s distance to the walls and its depth in the water, which prevents collisions with the tube system.