Peaches, not surprisingly, pack a punch for Georgia's economy. More than 130 million pounds of peaches are produced in Georgia per year, and the southern staple has a total farm gate value of more than $71 million.
But cultivating peaches is a complex and manually-intensive process that has put a strain on many farms stretched for time and workers. To solve this problem, the Georgia Tech Research Institute (GTRI) at Georgia Institute of Technology has developed an intelligent robot designed to handle the human-based tasks of thinning and pruning peach trees, which could result in significant cost savings for peach farms in Georgia.
Most folks are familiar with the harvesting of fruit and picking it up at the market. But there's actually a lot more that gets done before that point in the cultivation cycle.
The robot, a Universal Robots UR5 robotic arm, uses a light-detection-and-ranging (LIDAR) sensing system and highly specialized global-positioning-system (GPS) technology to self-navigate through peach orchards and steer clear of obstacles (Figure 1). The LIDAR system determines distances by targeting an object with a laser and measuring the amount of time it takes for the laser beam to reflect back, while the GPS technology measures locations as specific as a fraction of an inch.
The mobile-base-vehicle hardware is off-the-shelf, but its controller software has been developed and customized by GTRI. It uses an onboard Jetson board for processing the LIDAR data and performing obstacle avoidance. It navigates to RTK-GPS waypoints that have been inputted corresponding to each tree.
When mounted on our mobile base, and with end effector, the UR5 robotic arm had the right dimensions for peach trees. It is also classified as a collaborative robot that has sensors in its joints to detect unexpected collisions, which makes it relatively safe to operate around people.